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ABSTRACT

Neural music instrument cloning is an application of deep neural
networks for imitating the timbre of a particular music instrument
recording. One can create such clones using an approach such as
DDSP [1], which has been shown to achieve good synthesis qual-
ity for several instrument types [2]. However, this approach needs
about ten minutes of audio data from the instrument of interest
(target recording audio). In this work, we modify the DDSP archi-
tecture and apply transfer learning techniques used in speech voice
cloning [3] to significantly reduce the amount of target recording
audio required. We compare various cloning approaches and archi-
tectures across durations of target recording audio, ranging from
four to 256 seconds. We demonstrate editing of loudness and pitch
as well as timbre transfer from only 16 seconds of target record-
ing audio. Our code is available online1 as well as many audio
examples.2

1. INTRODUCTION

Neural music instrument cloning reproduces the timbre of a given
music instrument recording (target recording audio). For instance,
one can clone the recording of a specific saxophone playing in
an acoustic environment and synthesise audio having similar tim-
bre. A clone can be used to modify attributes of a recording,
like adjusting pitch or loudness; or to transfer timbres between
recordings, whether the same type of instrument or not. One re-
cent approach to creating neural music instrument clones is pro-
vided by DDSP [1], although Engel et al. do not use the term
“clone.” Neural music instrument cloning is closely related to neu-
ral voice cloning [3], where the identifiable characteristics of a
given speaker are extracted from example recordings and can then
be used to synthesise new speech from that speaker.

The synthesis quality of a clone, whether for voice or music
instrument synthesis, depends on the amount and variety of train-
ing data available. The DDSP approach can imitate the timbre of
a recording using about ten minutes of target recording data [1,2].
Our work significantly reduces that amount, e.g., to the order of
tens of seconds, by modifying the DDSP architecture and using
transfer learning. Our main contributions are:

• We apply transfer learning techniques from neural voice
cloning [3] to DDSP;

1https://github.com/erl-j/neural-instrument-cloning
2https://erl-j.github.io/neural-music-instrument-cloning-web-
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• We introduce a novel trainable reverb design whose con-
strained nature makes it better for fitting on small amounts
of data;

• We show how including the confidence of the pitch esti-
mation as conditioning to a DDSP model helps decrease
synthesis artefacts when training neural music instrument
clones on little data.

In the next section, we briefly review neural music audio syn-
thesis and speech voice cloning. Section 3 presents our model
architecture. In Sec. 4 we present experiments comparing various
cloning approaches and model architectures. Section 5 demon-
strates some applications. Section 6 discusses our results and presents
several future avenues of research.

2. RELATED WORK

Neural music instrument synthesis Neural audio synthesis ap-
plies neural networks to the synthesis of audio, including music in-
strument sounds [1,4–11] Neural synthesis models often represent
recording-specific data with latent encodings that are produced
by inputting audio data into a trained encoder [1, 4, 8–10]. The
DDSP algorithm [1] combines spectral modelling synthesis [12]
with convolution reverberation to synthesise particularly realistic
instrument timbres that can be controlled in pitch and loudness.
We use the term loudness to refer to a measurable characteris-
tic computed from an A-Weighting of the power spectrum [11].
DDSP requires about ten minutes of audio training data of a solo
pitched instrument to achieve good synthesis quality [1, 2].

Neural voice cloning Neural voice cloning applies neural net-
works to synthesise the voices of specific speakers from small
amounts of audio [3, 13, 14]. Arik et al. [3] compare multiple
approaches for cloning voices from minutes to seconds of target
speaker audio. These approaches start with a pre-training phase
where they train a multi-speaker model on many speakers. For
each speaker, a speaker-specific embedding is trained alongside
the multi-speaker model. Once the multi-speaker model is trained
they proceed with a cloning phase in which voice cloning is per-
formed using speaker adaptation or speaker encoding. Speaker
adaptation fine-tunes a multi-speaker model on a few samples of
the target speaker while speaker encoding trains an encoder model
to compute the necessary adaptation in a single inference step.
Arik et al. [3] compare speaker adaptation by tuning only the em-
bedding or by tuning the whole model and find that whole-model
adaptation gives the best results in terms of naturalness and target-
speaker similarity. The authors also find that speaker encoding
is many times faster than speaker adaptation but generates speech
that is less natural and less similar to the target speaker. These are
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Figure 1: Our modified DDSP architecture. Three control signals are fed to the decoder along with a trainable latent embedding Z. The
neural decoder in turn controls a harmonic + noise synthesiser. A trainable reverb is applied. The decoder is trained across multiple
recordings. Separate instances Z and reverb are trained for each recording.

Figure 2: Diagram of the proposed two-part reverb design. A short trainable IR is used to model the early reflections and a filtered
white noise with trainable filter magnitude contours is used to model the late reverberation. These two components are combined with a
cross-fade. Two trainable scalars – αdry , αwet – are used to scale the amplitude of the dry signal and the wet signal, respectively.

both instances of transfer learning [15], the technique of leverag-
ing a model trained on a particular domain for a different domain.

3. MODEL ARCHITECTURE

Overview Figure 1 gives an overview of our modified DDSP [1]
architecture:

• We provide the decoder with a trainable recording-specific
embedding notated Z. Note that we do not use an encoder
to produce Z, instead, we train a separate instance of Z
for each recording jointly with the decoder as done by Arik
et al. [3]. This implicitly enforces a constraint on Z to be
constant throughout each recording regardless of what is
being played on the instrument.

• We introduce a new reverb design, detailed in section 3,
motivated by acoustic models of natural impulse responses
(IR). This new reverb design is used during cloning (see
4.3.2). Like with Z, the reverb is specific to each recording.

• We condition the decoder on the confidence of the F0 esti-
mate given by CREPE [16], as well as F0 and loudness con-
tours. This is intended to help the model determine whether
the sound to be produced is pitched or not (exhales, inhales,
key presses, etc.).

Details Our model synthesises audio at a sampling rate of 48
kHz. We adjust the loss, harmonic + noise synthesiser and de-
coder used by DDSP, mainly to accommodate for this sampling
rate [1]. The multi-scale spectral loss uses the following FFT-sizes:
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384. The harmonic
synthesiser has 192 harmonics, and the filtered noise synthesiser
has 192 magnitudes. The recording-specific embedding Z has 512
dimensions. During the forward pass, Z is repeated over the time
dimension so that it has the same frame rate as F0, loudness, and
F0-confidence contours (250 frames per second). We apply a tanh
non-linearity to Z before the decoder. As in DDSP [1], the de-
coder uses a bidirectional 512-channel GRU. Each input including
Z has its own 3-layer fully connected stack with 512 neurons per
hidden layer applied before the GRU. A final 3-layer fully con-
nected stack is applied after the GRU. Finally, the output of the
decoder is stacked with the F0 contour to produce the synthesiser
parameters. In total, our decoder has 12,548,993 parameters.

Reverb design Figure 2 illustrates our new reverb design. Our
early attempts at training models from little target training data
using an unconstrained reverb, as done in [1], suffered from ex-
cessive reverberation (see 4.3.2). We also experimented with us-
ing filtered white noise as the IR [2, 17] but found that the results
sounded unnatural (see 4.3.2). This led us to implement a new
two-part reverb design motivated by acoustics.

Prior work in acoustics shows how IR of natural environments
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Table 1: Summary of the Solos Wind Clean (SWC) dataset

pre-training set cloning set
instrument type #excerpts #videos total duration mean excerpt duration #excerpts #videos total duration mean excerpt duration

bassoon 10 8 0:42:46 0:04:16 5 4 0:18:09 0:03:37
clarinet 34 23 0:59:40 0:01:45 4 4 0:12:55 0:03:13
flute 30 29 1:55:03 0:03:50 4 4 0:09:33 0:02:23
horn 21 16 1:19:54 0:03:48 2 2 0:08:52 0:04:26
oboe 28 21 1:17:09 0:02:45 7 4 0:24:13 0:03:27
trumpet 16 16 0:16:44 0:01:02 2 2 0:05:13 0:02:36
trombone 29 20 1:17:27 0:02:40 1 1 0:01:53 0:01:53
tuba 11 11 0:27:59 0:02:32 5 3 0:09:58 0:01:59
saxophone 27 20 0:51:00 0:01:53 2 2 0:04:35 0:02:17
total 206 164 9:07:42 0:02:43 32 26 1:35:21 0:02:52

consist of early reflections and dense reverberation [18]. Our de-
sign mimics this structure by modelling the IR as a superposition
of two parts: a free portion to model early reflections, and a portion
of filtered white noise to model dense reverberation. We linearly
cross-fade between the two parts between 100 to 200 ms, to create
an IR with a total duration of one second. Furthermore, our reverb
module has two trainable scalars corresponding to the amplitudes
of the dry and wet signals: αdry and αwet. There are 9600 param-
eters for the early reflections part (200 ms), and 25000 parameters
for modelling the dense reverberation, representing 250 frames of
100 filter-band amplitudes.

4. EXPERIMENTS

We now perform experiments to compare various approaches for
training neural music instrument clones, as well as to evaluate the
impacts of our modifications to the DDSP architecture. We eval-
uate these different configurations by looking at the multi-scale
spectral reconstruction loss of test excerpts. We also perform in-
formal listening evaluation, paying particular attention to the nat-
uralness of the synthesis as well as its timbral similarity to the
target [3, 19]. We invite the reader to listen to follow along with
the accompanying audio examples in the experiments section of
the web supplement. We describe the datasets we use before pre-
senting our experiments.

4.1. Datasets

4.1.1. Solos Wind Clean (SWC)

Our experiments use a subset of Solos [20], a dataset contain-
ing 755 videos of 13 different instrument types collected from
YouTube using queries like “audition” and “solo”. Since DDSP
only works with monophonic recordings, we keep only the Solos
videos that are of strictly monophonic instruments. We manually
clean up this data by listening and removing video sections hav-
ing silences, loud ambient noise relative to the instrument sound,
exotic playing styles (e.g. flute beatboxing), mislabelling of in-
strument type, stomping, metronome sounds, heavy compression
artefacts, clipping, and noise-reduction artefacts. Removing these
sections provides partition points from which we extract excepts
while keeping track of their originating video. The reason for
this is that some recordings from Solos come from separate takes
spliced together. This can cause problems if the takes are recorded
in different conditions.

We partition the cleaned data into pre-training and cloning sets
using the following procedure. For each instrument type, we ran-
domly sample four videos from those contributing at least one ex-
cerpt of duration exceeding 64 seconds. These videos are assigned
to an initial cloning set, and the remaining videos are assigned to
the pre-training set. To avoid test data leakage, we retrieve the
YouTube channel ID of each video using the YouTube API and
remove videos from the initial cloning set with a channel whose
videos also appear in the pre-training set. The reason for this is
that we do not want recordings of the same specific instrument
and recording condition to appear across sets. We designate the
resulting dataset as Solos Wind Clean (SWC).

4.1.2. Saxophone-extra

To study the effectiveness of various cloning approaches as a func-
tion of training data size we find an audition video on YouTube
with a suitable duration, i.e., providing at least 256 seconds of
suitable training material, and at least 32 seconds for testing. We
query YouTube with “saxophone audition” with a duration filter
of 4-20 minutes, and then select the first video where the po-
sition of the player is consistent throughout, and most of it is
instrument performance. We manually trim speech and long si-
lences, leaving audio data of duration 08:29. We call this single
recording dataset saxophone-extra. We use the first 06:40 as train-
ing data (saxophone-extra-train), and the final 01:48 as test data
(saxophone-extra-test).

4.2. Comparing training approaches

We now compare approaches for training clones, first when the in-
strument type (saxophone) appears in pre-training, and then when
it does not appear.

4.2.1. Cloning an instrument of a type seen during pre-training

Pre-training phase We first pre-train a model without constraints
on the IR using the saxophone excerpts from SWC-pre-train- sax-
ophone. This corresponds to 27 excerpts from 20 different videos,
totalling 51 minutes. The mean excerpt duration is 1 minute and
53 seconds. The model is pre-trained using the ADAM optimizer
with a starting learning rate of 1 × 10−4 and a learning rate de-
cay occurring every 10k steps with a rate of 0.98 [1]. All training
data is windowed into four-second windows with a hop-size of one
second. The batch size for pre-training is six. We train for 380k
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Table 2: Hyper-parameters used during cloning. The number of cloning epochs is shown for each cloning approach across different training
data sizes along with approximate training time using a single NVIDIA GeForce RTX 2080 Ti in parentheses. Learning rate of 3× 10−5 is
used for init-whole and sax/nosax-whole and 3× 10−3 is used for sax/nosax-parts.

training data size (seconds) 4 8 16 32 64 128 256

init-whole, epochs 2900 (5h) 1000 (1h40) 1000 (3h) 1000 (6h) 1000 (12h) 300 (6h30) 300 (13h)
sax/nosax-whole, epochs 100 (5 min) 100 (10 min) 100 (20 min) 100 (47 min) 100 (1h45) 100 (3h) 100 (4h)
sax/nosax-parts, epochs 300 (15 min) 300 (25 min) 300 (50 min) 100 (50 min) 100 (1h35) 100 (3h) 100 (5h)

steps (around 36 hours on three NVIDIA GeForce RTX 2080 Ti)
and find an average training loss of 7.553 over the last 1k steps.

Cloning phase We perform cloning using three different approaches
across seven different training data sizes from saxophone-extra-
train: 4, 8, 16, 32, 64, 128, and 256 seconds. We extract all train-
ing data starting from the beginning of saxophone-extra-train. As
in the pre-training phase, all training data is windowed into four-
second windows with a hop-size of one second. During the cloning
phase, we change the reverb design to the two-part design. The
three cloning approaches we test are:

• sax-parts: Load decoder pre-trained on SWC-pre-training-
saxophone. Initialize and tune only Z and the reverb.

• sax-whole: Load decoder pre-trained on SWC-pre-training-
saxophone. Tune decoder, Z and the reverb.

• init-whole: Initialize decoder, Z and reverb. Tune decoder,
Z and the reverb.

All cloning experiments use the ADAM optimizer with fixed
learning rates and a batch size of one. We use manual search to
select the number of epochs and the learning rate for each config-
uration. Table 2 summarises the learning rates and the number of
epochs we use for each configuration. Loss plots from cloning are
available in the web supplement.

After cloning, we compute the multi-scale spectral reconstruc-
tion loss on the entirety of saxophone-extra-test. We also syn-
thesise the first 32 seconds of saxophone-extra-test for listening.
Since our implementation only supports rendering 4 seconds at
a time, we render excerpts longer than 4 seconds by windowing
control signals with four-second windows with a hop size of 3 sec-
onds, and then linearly cross-fade the results.

Comparison to nearest instrument recording from pre-training
In addition to the aforementioned cloning approaches, we synthe-
sise saxophone-extra-test with each pair of Z and reverb from the
pre-training stage. We record the lowest reconstruction loss and
the resulting synthesis. We refer to this approach as sax-nearest.
We use this as an additional point of comparison with the afore-
mentioned approaches. Additionally, it gives us a general idea of
how different our cloning target is from the recordings seen during
pre-training.

Evaluation Figure 4.2) shows that starting from a pre-trained
model (sax-parts, sax-parts-whole) results in the lowest test losses
for small training data sizes (4, 8, and 16 seconds). We observe
with listening that the approach involving pre-training and then
fine-tuning parts of the model (sax-parts) sounds the most natural
for these training data sizes. However, we hear two noticeable arte-
facts. First, it sounds as if the instrument was recorded at a greater

Figure 3: Comparing different cloning approaches. We observe
that when less than 32 seconds of training data are used, starting
from a pre-trained model (sax-parts, sax-parts-whole) results in
the lowest test losses.

distance from the microphone than in the target. This artefact is
present for all training data sizes but becomes less noticeable as
the training data size increases. The second artefact is an echo
not present in the target occurring for training data sizes under 32
seconds. This artefact is most noticeable for the 4- and 8-seconds
train data sizes but can also be heard faintly in the 16-seconds ex-
amples. We do not hear much improvement in the naturalness or
target similarity past 32 seconds of training data. Up to 32 sec-
onds, tuning the entire model during cloning with the approach
leveraging pre-training (sax-whole) sounds slightly more natural
than the approach that does not leverage pre-training (init-whole).
Additionally, the approach that leverages pre-training (sax-whole)
requires less training time during cloning (see Table 2). Overall,
we find that for less than 32 seconds of training data, pre-training
and then tuning parts of the model (sax-parts) sounds more natu-
ral and similar to the target. With more than 32 seconds of train-
ing data, tuning the whole model during cloning (init-whole, sax-
whole) produces better naturalness and similarity to the target.

4.2.2. Cloning an instrument of a type not seen during pre-
training

We perform the following experiment to determine how well the
aforementioned cloning approaches work if the target recording is
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of an instrument type not seen during pre-training. We pre-train
a model on all excerpts in SWC-pre-training except for the saxo-
phone excerpts. This corresponds to 179 excerpts from 144 dif-
ferent videos, totalling 8 hours 16 minutes, and 46 seconds. The
mean excerpt duration is 2 minutes and 47 seconds. We pre-train
the model using the same setup as in 4.2. We train for 558k steps
(around 60 hours) and find an average training loss of 7.746 over
the last 1k steps.

We define the following cloning approaches:

• nosax-parts: Load decoder pre-trained on all of SWC-pre-
training except for the saxophone recordings. Initialize and
tune only Z and the reverb.

• nosax-whole: Load decoder pre-trained on all of SWC-pre-
training except for the saxophone recordings. Tune de-
coder, Z and the reverb.

Similar to our previous experiment, we render saxophone-extra-
test with each pair of Z and reverb trained during the pre-training
stage and record the lowest reconstruction loss, and the resulting
synthesis. We refer to this approach as nosax-nearest.

Figure 4: Cloning an instrument type seen during pre-training
(sax-parts, sax-whole) vs cloning an instrument type not seen dur-
ing pre-training (nosax-parts, nosax-whole). We observe similar
test losses regardless if the model was pre-trained on recordings of
other saxophone or on recordings of wind instruments other than
saxophone.

Figure 4 shows pre-training decreases the reconstruction losses
to a similar extent regardless of if the model was pre-trained on
saxophones or if it was pre-trained on other wind instruments.
Our listening evaluation finds that the type of pre-training data
used makes a significant difference when tuning only parts of the
model in the cloning phase. We find that while both approaches
sound natural, the approach that leverages pre-training on saxo-
phone recordings (sax-parts) sounds more similar to the target.
When the pre-training data does not include the saxophone, the
clone (nosax-parts) sounds between a saxophone and a horn. Re-
gardless of whether a model was pre-trained on saxophones (sax-
whole) or on other wind instruments (nosax-whole), we find tuning

the whole model during cloning results in sounds of similar natu-
ralness and similarity to the target across all training data sizes.

4.3. How much do the architecture changes alone improve model
performance?

One surprising result from the experiments in Sec. 4.2 is that even
the models without pre-training achieve good results when training
on as little as 32 seconds of data. Prior work [1, 2] recommends
around 10 minutes of target audio for training such a model. This
discrepancy could be due to several factors:

• The training data covers a particularly wide range of notes
despite its short duration;

• The additional information provided by F0-confidence makes
the modelling task easier;

• Our two-part reverb design reduces the need for data.

We thus perform two ablation studies to validate that the changes
we make to the DDSP architecture improve model performance.
Both ablation studies introduce variations to the -init approach
where we clone a recording without any pre-training. All ablation
experiments reuse the same hyper-parameters as init-whole. We
see the choice of hyperparameters is appropriate overall according
to the loss convergence (provided in the web supplement).

4.3.1. Is F0-confidence conditioning beneficial?

We build and train a model that uses only F0 and loudness con-
tours (init-whole-no_f0conf ), and compare its performance to our
full model (init-whole). Figure 5 shows that the model with F0-
confidence conditioning achieves lower test losses except at the
lowest amount of training data used (4 seconds). The unusually
high training losses for the model trained without F0-confidence
conditioning (init-whole-no_f0conf ) for the two lowest training
data sizes could be due to stopping training too early. In listening,
we find the F0-confidence conditioning reduces artefacts, even for
larger training data sizes. These particular artefacts occur during
the onsets and offsets of notes.

4.3.2. Comparing reverb designs

To evaluate the impact of our two-part reverb design, we compare
the init-whole approach with the following approaches:

• init-whole-free_reverb which is identical to init-whole ex-
cept that it does not impose constraints on the reverb IR
other than its duration

• init-whole-fn_reverb which is identical to init-whole except
that it uses a filtered noise to produce the entire IR similar
to [2].

Figure 6 shows that the model using the two-part reverb design
(init-whole) obtains the lowest losses across all training data sizes.
We also find that these models sound the most natural and similar
to the target. We observe that the model with the unconstrained
reverb (init-whole-free_reverb) suffers from a clear artefact in the
form of excessive reverberation – an artefact particularly notice-
able when the training data is small. We also observe that the
model using the filtered noise reverb (init-whole-fn_reverb) has
poor naturalness and poor similarity to the target for all training
data sizes. In general, the synthesised examples sound too dry
compared to the target. The only exception is a subtle unnatural
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Figure 5: Is F0-confidence conditioning beneficial? We observe
that the model using F0-confidence conditioning (init-whole) ob-
tains lower losses across all training data sizes larger than 4 sec-
onds.

Figure 6: Comparing reverb designs. The model using the two-
part reverb (init-whole) design obtains the lowest test losses for all
training data sizes.

reverberation occurring with the smallest training data sizes (4 and
8 seconds).

5. APPLICATIONS

Engel et al. [1] demonstrates multiple applications enabled by the
DDSP architecture. We demonstrate these applications are viable
with our approach using 16 seconds of target recording data or less.
We train clones from both excerpts in SWC-cloning-saxophone

using our pre-trained saxophone model (Sec. 4.2.1). We also
do the same for flute and trombone, i.e., first pre-training mod-
els on SWC-pre-training-flute or SWC-pre-training-trombone and
then training clones on each excerpt from SWC-cloning-flute (4
excerpts) or SWC-cloning-trombone (1 excerpt). All clones in this
section are trained on 16 seconds of training data using the -parts
approach from Sec. 4.2.1, meaning that only the recording-specific
embedding Z and the reverb are tuned.

We invite the reader to listen to the accompanying audio exam-
ples in the applications section of the web supplement. We demon-
strate the following applications:

Loudness editing We produce versions of the excerpt that sound
as if the instrument was played louder or quieter. We do this by
shifting the loudness contour up or down. We notice that some re-
synthesised examples sound unnatural, especially when the loud-
ness contour is shifted by a large amount (-12 dB, +12 dB) (see
flute #2). We observe by listening that shifting the loudness con-
tour has an effect on the timbre similar to what we would expect
from playing a real instrument quieter or louder. For example, the
saxophones and trombones sound more bright when played louder
and less bright when played quieter.

Pitch editing We produce versions of the excerpt that sound as
if they were played in a different key. We do this by scaling the
F0 contour., We use the pitch shifting effect from librosa [21] as
a naive baseline. We observe with listening that some artefacts
appear when using the clone to perform transposition. We also see
that the transposed examples retain more timbral similarity to the
cloning target than the naive baseline. The latter is particularly
noticeable in the transpositions of trombone and saxophone #1.

Timbre transfer We synthesise a recording (control source) with
the timbre of a different recording (timbre source) We use the first
32 seconds of saxophone-extra-test as our control source. In the
presented examples, we do not use the trick by Engel et. al [1]
where you first apply the trained reverb from the timbre source to
the control source before extracting the control signals.

We observe that we obtain better results by shifting the loud-
ness input so that the maximum value of the control signal matches
the maximum loudness present in the training data of the clone.
We also noticed some artefacts in the results: A subtle trailing
echo can be heard in some examples (see audio examples for sax-
ophone #1), some of the onsets and note transitions sound strange
(see trombone) and some examples have excessive noise which
sounds unnatural (see flute #4).

6. DISCUSSION

6.1. Results

Our first experiment compares cloning approaches when the target
instrument is of a type seen during model pre-training. Here we
see that when only small amounts of target training data are avail-
able (< 16 seconds), tuning only Z and the reverb produce better
results than tuning the entire model. Our second experiment looks
at when the target instrument is of a type not seen during model
pre-training. We see the same result as before, but with slightly
worse similarity to the target recording. Beyond a certain amount
of training data (32 seconds in our case), tuning the whole model
results in sound more similar to the target than tuning only part of
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the model. Interestingly, starting from a pre-trained model does
not lead to significant improvements in naturalness or similarity
to the timbre of the target when the whole model is tuned during
cloning. However, starting from a pre-trained model allows us to
clone instruments faster (see Table 2), even if the target recording
was of an instrument of a different type than those seen in pre-
training.

Our third and fourth experiments are ablation studies, look-
ing at the impact of our modifications to the DDSP architecture –
namely, F0-confidence conditioning of the decoder and the two-
part reverb design. We observe that F0-confidence conditioning
reduces artefacts around note onsets and offsets, especially if only
a small amount of training data is available. Although we do not
observe this, there might be a drawback with using this additional
control signal in a timbre-transfer setting since the F0-confidence
contour can be entangled with the timbre of an instrument. This
could lead to unnatural output from a model trained on a different
instrument type.

In our fourth experiment, we observe that our two-part reverb
design achieves better results than either unconstrained reverb or
a filtered noise reverb. However, as the amount of target data in-
creases, the difference in performance between the two-part reverb
design and unconstrained reverb diminishes. Further investigation
could test if the two-part reverb design has performs as well when
applied to the synthesis of a broader range of instrument types and
acoustic environments.

There is difficulty in setting training hyperparameters to pro-
vide a fair comparison of different architectures across multiple
training data sizes. We aimed for a fair comparison between con-
figurations by setting hyper-parameters such that each reached con-
vergence of the test loss. Of the 56 configurations that we test, only
four appear to not have fully converged after the given number of
training epochs (see loss plots in web supplement): init-whole-
no_f0conf at 4 seconds and 8 seconds, init-whole-free_reverb at 4
seconds, and init-whole-fn_reverb at 16 seconds. Additionally, in
light of the variable training data sizes, we believe the number of
model updates might be a more useful measure than the number of
epochs for reasoning about model training.

Overall, our experiments show how combining transfer learn-
ing with our modifications to the DDSP architecture has clear ad-
vantages. It allows one to create natural-sounding synthesis mod-
els of specific instrument recordings from smaller amounts of tar-
get instrument audio than before.

6.2. Future work

In this paper, we evaluate models by inspecting the reconstruction
loss as well as generating a variety of examples for audition. Fu-
ture work will evaluate such models using more formal listening
tests with subjects drawn from the intended audience, as well as
their use in creative settings. We have applied our approaches to a
small number of instruments. Further work will extend to a larger
set of instrument types and synthesis architectures. Previous work
extends DDSP to synthesise audio from MIDI [22–24]. Sharing
parts of a model across recordings could help improve synthesis
quality from MIDI as well as help reduce the amount the training
data required.

Arik et al. [3] use a trained encoder to produce latent embed-
dings for neural voice cloning. This approach greatly accelerates
the cloning process at a slight cost in synthesis quality. Earlier
work in neural instrument synthesis also employs a trainable en-

coder [1,4,8–10]. Future work will explore integrating an encoder
into our proposed approach. This could pose some challenges.
Arik et al. [3] report that training the encoder jointly with the rest
of the model is challenging and so opt for a multi-stage training
process. Additionally, our approach uses a recording-dependent
reverb, which could require some modification.

Differentiable rendering techniques have been used to tran-
scribe polyphonic passages [25]. Other work has successfully learned
to synthesise harmonic instruments from a mixture of instruments
given a transcription [26]. We believe that training a multi-instrument
model instils broad knowledge about musical instrument timbre
into the decoder. Thus, future work will explore if using a multi-
instrument model as a differentiable renderer could accomplish
the simultaneous transcription and music instrument cloning with
polyphonic music recordings, e.g., piano and ensembles.
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